No Medium-Term Spinocerebellar Input Plasticity in Deep Cerebellar Nuclear Neurons In Vivo?
نویسندگان
چکیده
منابع مشابه
In Vivo Analysis of Inhibitory Synaptic Inputs and Rebounds in Deep Cerebellar Nuclear Neurons
Neuronal function depends on the properties of the synaptic inputs the neuron receive and on its intrinsic responsive properties. However, the conditions for synaptic integration and activation of intrinsic responses may to a large extent depend on the level of background synaptic input. In this respect, the deep cerebellar nuclear (DCN) neurons are of particular interest: they feature a massiv...
متن کاملLearning-induced plasticity in deep cerebellar nucleus.
Evidence that cerebellar learning involves more than one site of plasticity comes from, in part, pavlovian eyelid conditioning, where disconnecting the cerebellar cortex abolishes one component of learning, response timing, but spares the expression of abnormally timed short-latency responses (SLRs). Here, we provide evidence that SLRs unmasked by cerebellar cortex lesions are mediated by an as...
متن کاملMorphine Consumption During Lactation Impairs Short-Term Neuronal Plasticity in Rat Offspring CA1 Neurons
Background: Facing environmental factors during early postnatal life, directly or indirectly via mother-infant relationships, profoundly affects the structure and function of the mammals’ Central Nervous System (CNS). Objectives: This study aimed to evaluate the effect of morphine consumption during the lactation period on short-term synaptic plasticity of the hippocampal Cornu Ammonis 1 (C...
متن کاملIntrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells.
Synaptic gain control and information storage in neural networks are mediated by alterations in synaptic transmission, such as in long-term potentiation (LTP). Here, we show using both in vitro and in vivo recordings from the rat cerebellum that tetanization protocols for the induction of LTP at parallel fiber (PF)-to-Purkinje cell synapses can also evoke increases in intrinsic excitability. Th...
متن کاملReceptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo.
The cutaneous parallel fiber (PF) receptive fields of cerebellar stellate and basket cells in the cerebellar C3 zone in vivo are normally very small but can be dramatically enlarged by climbing fiber (CF)-dependent plasticity. To analyze the effects of this receptive field plasticity, we present for the first time whole-cell patch-clamp recordings from these interneurons during natural and elec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Cerebellum
سال: 2016
ISSN: 1473-4222,1473-4230
DOI: 10.1007/s12311-016-0839-0